

	East Midlands Academy Trust Maths Skill Progress Map - Number					
	Year 1	Year 2	Year 3	Year 4	Year 5	Year 6
Place Value: Counting	Count to and across 100, forwards and backwards, beginning with 0 or 1, or from any given number Given a number, identify 1 more and 1 less		Continue to count in ones, tens and hundreds, so that they become fluent in the order and place value of numbers to 1000. 9Non-Statutory Guidance)	Count backwards through 0 to include negative numbers Counting in tens and hundreds, maintain fluency in other multiples through varied and frequent practice. (Non-Statutory Guidance)	Interpret negative numbers in context, count forwards and backwards with positive and negative whole numbers, including through 0	Use negative numbers in context, and calculate intervals across 0
			Find 10 or 100 more or less than a given number	Find 1,000 more or less than a given number		
	Count in multiples of 2 s and 5s	Count in steps of 2, 3, and 5 from 0 , and in 10 s from any number, forward and backward	Count from 0 in multiples of $4,8,50$ and 100 ; find 10 or 100 more or less than a given number	Count in multiples of 6, 7, 9, 25 and 1,000 (From Calculations)	Count forwards or backwards in steps of powers of 10 for any given number up to $1,000,000$	
		Count in multiples of three to support their later understanding of a third (non-Statutory Guidance)	Count up and down in tenths (From Fractions)	Count up and down in hundredths (From Fractions)	Recognise and describe linear number sequences (for example, 3 , $3 u 1 / 2,4,4 u 1 / 2 \ldots .$. , including those involving fractions and decimals, and find the term-to-term rule in words (for example, add $1 / 2$). (NonStatutory Guidance)	
Comparing Numbers	Use the language of: equal to, more than, less than (fewer), most, least	Compare and order numbers from 0 up to 100 ; use $<,>$ and $=$ signs	Compare and order numbers up to 1,000	Order and compare numbers beyond 1,000	order and compare numbers to at least 1,000,000.	order and compare numbers up to 10,000,000
				Compare numbers with the same number of decimal places up to 2 decimal places (Fractions Unit)	Read, write, order and compare numbers with up to 3 decimal places	
Identifying, representing and estimating	Identify and represent numbers using objects and pictorial representations including the number line	Identify, represent and estimate numbers using different representations, including the number line	Identify, represent and estimate numbers using different representations	Identify, represent and estimate numbers using different representations Using a variety of representations, including measures, pupils become fluent in the order and place value of numbers beyond 1000 (NonStatutory Guidance)		Use the whole number system, including saying, reading and writing numbers accurately. (NonStatutory Guidance)
Reading and Writing	Count, read and write numbers to 20 in numerals and words	Read and write numbers to at least 100 in numerals and in words	Read and write numbers up to 1,000 in numerals and in words		Read and write numbers to at least 1,000,000.	Read and write numbers up to 10,000,000
Roman Numerals			Tell and write the time from an analogue clock, including using 12 -hour clocks, 24hour clocks and using Roman Numerals from I to XII (From Time Unit)	Read Roman numerals to 100 (I to C) and know that over time, the numeral system changed to include the concept of 0 and place value Roman numerals should be put in their historical context so pupils understand that there have been different ways to write whole numbers and that the important concepts of zero and place value were introduced over a period of time. (Non-Statutory Guidance)	Read Roman numerals to 1,000 (M) and recognise years written in Roman numerals	
Understanding Place Value	Begin to recognise place value in numbers beyond 20 by reading, writing, counting and comparing numbers up to 100, supported by objects and pictorial representations. (Non-Statutory Guidance)	Recognise the place value of each digit in a two-digit number (10s, 1s)	Recognise the place value of each digit in a 3 -digit number (100s, 10s, 1s)	Recognise the place value of each digit in a four-digit number (1,000s, 100s, 10s, and 1s)	Determine the value of each digit in numbers up to 1,000,000	Determine the value of each digit in numbers up to $10,000,000$
		Partition numbers in different ways (for example, $23=20+3$ and $23=10$ $+13)$. (Non-Statutory Guidance)	recognise that tenths arise from dividing an object into 10 equal parts and in dividing one-digit numbers or quantities by 10	recognise that hundredths arise when dividing an object by 100 and dividing tenths by 10	Recognise and use thousandths and relate them to tenths, hundredths and decimal equivalents	Identify the value of each digit in numbers given to 3 decimal places
		Begin to understand zero as a place holder. (Non-Statutory Guidance)	Use larger numbers to at least 1000, applying partitioning related to place value using varied and increasingly complex problems, (for example, $146=100+40$ and $6,146=130+16$). (NonStatutory Guidance)	Find the effect of dividing a one- or two-digit number by 10 and 100, identifying the value of the digits in the answer as ones, tenths and hundredths (From Fractions)	Multiply and divide whole numbers and those involving decimals by 10,100 and 1,000	multiply and divide numbers by 10, 100 and 1,000 giving answers up to 3 decimal places (Fractions)
Rounding				Round any number to the nearest 10, 100 or 1,000	Round any number up to $1,000,000$ to the nearest 10,100 , $1,000,10,000$ and 100,000	Round any whole number to a required degree of accuracy
				Round decimals with 1 decimal place to the nearest whole number (From Fractions)	Round decimals with 2 decimal places to the nearest whole number and to 1 decimal place	
				Connect estimation and rounding numbers to the use of measuring instruments (Non-Statutory Guidance)		
Properties of Number: Factors, multiples, Primes, Square and Cube Numbers				$\begin{array}{l}\text { Recognise and use factor pairs and commutativity in mental } \\ \text { calculations }\end{array}$	Identify multiples and factors, including finding all factor pairs of a number, and common factors of 2 numbers	Identify common factors, common multiples and prime numbers
					Know and use the vocabulary of prime numbers, prime factors and composite (non-prime) numbers	
					Establish whether a number up to 100 is prime and recall prime numbers up to 19	
					Recognise and use square numbers and cube numbers, and the notation for squared (${ }^{2}$) and cubed (${ }^{3}$)	
Problem Solving		Use place value and number facts to solve problems	Solve number problems and practical problems involving these ideas (number and Place Value)	Solve number and practical problems that involve all of the above and with increasingly large positive numbers	Solve number problems and practical problems that involve all of the above	Solve number and practical problems that involve all of the above

		Maths Skill Progress Map - Fractions, Decimals, Percentages and Ratio				
	Year 1	Year 2	Year 3	Year 4	Year 5	Year 6
Counting and Sequences		Count in fractions up to 10 , starting from any number and using the $1 / 2$ and $2 / 4$ equivalence on the number line (NonStatutory Guidance)	Count up and down in tenths Connect tenths to place value, decimal measures and to division by 10. (NonStatutory Guidance)	Count up and down in hundredths Practise counting using simple fractions and decimals, both forwards and backwards. (Non-Statutory Guidance)	Continue to practise counting forwards and backwards in simple fractions. Extend counting from year 4, using decimals and fractions including bridging zero, for example on a number line (Non-Statutory Guidance)	Generate and describe linear number sequences (with fractions) (From Algebra)
Recognising	Recognise, find and name a half as 1 of 2 equal parts of an object, shape or quantity	Recognise, find, name and write fractions $1 / 3,1 / 4,2 / 4$ and $3 / 4$ of a length, shape, set of objects or quantity	Recognise and use fractions as numbers: unit fractions and nonunit fractions with small denominators Recognise fractions in the context of parts of a whole, numbers, measurements, a shape, and unit fractions as a division of a quantity. (Non-Statutory Guidance)	Recognise and show, using diagrams, families of common equivalent fractions	Recognise mixed numbers and improper fractions and convert from one form to the other and write mathematical statements >1 as a mixed number [for example, $2 / 5+4 / 5=$ $6 / 5=11 / 5]$	Use a variety of images to support their understanding of multiplication with fractions. This follows earlier work about fractions as operators (fractions of), as numbers, and as equal parts of objects, for example as parts of a rectangle. (Non-Statutory Guidance)
				Extend the use of the number line to connect fractions, numbers and measures. (Non-Statutory Guidance) Connect hundredths to tenths and place value and decimal measure (Non-Statutory Guidance)		
	Recognise, find and name a quarter as 1 of 4 equal parts of an object, shape or quantity	Use fractions as fractions of discrete and continuous quantities by solving problems using shapes, objects and quantities. Connect unit fractions to equal sharing and grouping, to numbers when they can be calculated, and to measures, finding fractions of lengths, quantities, sets of objects or shapes. (Non-Statutory Guidance)	Recognise that tenths arise from dividing an object into 10 equal parts and in dividing one-digit numbers or quantities by 10	recognise that hundredths arise when dividing an object by 100 and dividing tenths by 10	Recognise and use thousandths and relate them to tenths, hundredths and decimal equivalents	
			Recognise, find and write fractions of a discrete set of objects: unit fractions and non-unit fractions with small denominators	Understand the relation between non-unit fractions and multiplication and division of quantities, with particular emphasis on tenths and hundredths. (Non-Statutory Guidance)	Recognise the per cent symbol (\%) and understand that per cent relates to 'number of parts per 100', and write percentages as a fraction with denominator 100, and as a decimal fraction	
Comparing and Ordering			Compare and order unit fractions, and fractions with the same denominators	Compare numbers with the same number of decimal places up to 2 decimal places	Compare and order fractions whose denominators are all multiples of the same number	Compare and order fractions, including fractions >1
Equivalence	 Connect halves and quarters to the equal sharing and grouping of sets of objects and to measures, as well as recognising and combining halves and quarters as parts of a whole. (Non-Statutory Guidance)	Recognise the equivalence of $2 / 4$ and $1 / 2$	Recognise and show, using diagrams, equivalent fractions with small denominators	Recognise and write decimal equivalents of any number of tenths or hundreds	$\begin{aligned} & \text { Read and write decimal numbers as fractions [for example, } \\ & 0.71=71 / 100 \text {] } \end{aligned}$	Use common factors to simplify fractions; use common multiples to express fractions in the same denomination
		Meet $3 / 4$ as the first example of a nonunit fraction. (Non-Statutory Guidance)	Begin to understand unit and non-unit fractions as numbers on the number line, and deduce relations between them, such as size and equivalence. They should go beyond the $[0,1]$ interval, including relating this to measure. (Non-Statutory Guidance)	Recognise and write decimal equivalents to $1 / 4$, 1/2, 3/4	Identify, name and write equivalent fractions of a given fraction, represented visually, including tenths and hundredths	Recall and use equivalences between simple fractions, decimals and percentages, including in different contexts
				Make connections between fractions of a length, of a shape and as a representation of one whole or set of quantities. Pupils use factors and multiples to recognise equivalent fractions and simplify where appropriate (for example, $6 / 9=2 / 3$ or $1 / 4=2 / 4$). (Non-Statutory Guidance)	Solve problems which require knowing percentage and decimal equivalents of $1 / 2,1 / 4,1 / 5,2 / 5,4 / 5$ and those fractions with a denominator of a multiple of 10 or 25	Associate a fraction with division and calculate decimal fraction equivalents [for example, 0.375] for a simple fraction [for example, 3/8]
					Make connections between percentages, fractions and decimals (for example, 100% represents a whole quantity and 1% is $1 / 100,50 \%$ is $50 / 100,25 \%$ is $25 / 100$) and relate this to finding 'fractions of'. (Non-Statutory Guidance)	
Calculating		$\begin{aligned} & \text { Write simple fractions, for example } \\ & 1 / 2 \text { of } 6=3 \end{aligned}$	Add and subtract fractions with the same denominator within one whole [for example, $5 / 7+1 / 7=6 / 7$] Understand the relation between unit fractions as operators (fractions of), and division by integers. (Non-Statutory Guidance)	Add and subtract fractions with the same denominator	Add and subtract fractions with the same denominator, and denominators that are multiples of the same number	Add and subtract fractions with different denominators and mixed numbers, using the concept of equivalent fractions
				Find the effect of dividing a one- or two-digit number by 10 and 100 , identifying the value of the digits in the answer as ones, tenths and hundredths (From Fractions)	Multiply proper fractions and mixed numbers by whole numbers, supported by materials and diagrams	Multiply simple pairs of proper fractions, writing the answer in its simplest form [for example, $1 / 4 \times 1 / 2=1 / 8$]
					Connect multiplication by a fraction to using fractions as operators (fractions of), and to division, building on work from previous years. This relates to scaling by simple fractions, including fractions >1. (Non-Statutory Guidance)	Divide proper fractions by whole numbers [for example, $1 / 3 \div 2=$ 1/6]
				Round decimals with 1 decimal place to the nearest whole number	Round decimals with 2 decimal places to the nearest whole number and to 1 decimal place (Also in Number)	Round any whole number to a required degree of accuracy (Also in Number)
Problem Solving and Ratio			Solve problems that involve the above Practise adding and subtracting fractions with the same denominator through a variety of increasingly complex problems to improve fluency. (Non-Statutory Guidance)	Solve problems involving increasingly harder fractions to calculate quantities, and fractions to divide quantities, including non-unit fractions where the answer is a whole number	Solve problems involving multiplication and division, including scaling by simple fractions and problems involving simple rates	Solve problems - involving the calculation of percentages [for example, of measures and such as 15% of 360] and the use of percentages for comparison involving unequal sharing and grouping using knowledge of fractions and multiples - involving the relative sizes of 2 quantities where missing values can be found by using integer multiplication and division facts involving similar shapes where the scale factor is known or can be found
				Solve simple measure and money problems involving fractions and decimals to two decimal places (From Measures)	Say, read and write decimal fractions and related tenths, hundredths and thousandths accurately and are confident in checking the reasonableness of their answers to problems. (Non-Statutory Guidance)	

Every child deserves to be the best they can be

East Midlands Academy Trust		East Midlands Academy Trust Maths Skill Progress Map - Measures (Money)				
	Year 1	Year 2	Year 3	Year 4	Year 5	Year 6
Money	Recognise and know the value of different denominations of coins and notes	Recognise and use symbols for pounds ($£$) and pence (p); combine amounts to make a particular value	Add and subtract amounts of money to give change, using both $£$ and p in practical contexts (Also in Calculations)	Estimate, compare and calculate different measures, including money in pounds and pence		
		Find different combinations of coins that equal the same amounts of money				
		Solve simple problems in a practical context involving addition and subtraction of money of the same unit, including giving change				
		Become fluent in counting and recognising coins. They read and say amounts of money confidently and use the symbols $£$ and p accurately, recording pounds and pence separately. (Non-Statutory Guidance)	Become fluent in recognising the value of coins, by adding and subtracting amounts, including mixed units, and giving change using manageable amounts. They record $£$ and p separately. The decimal recording of money is introduced formally in year 4. (Non-Statutory Guidance)			
Every child deserves to be the best they can be						

$\underset{\substack{\text { Eastmilionds } \\ \text { Accatemy rust }}}{ }$	East Midlands Academy Trust Maths Skill Progress Map - Measures (Time)	

	Year 1	Year 2	Year 3	Year 4	Year 5	Year 6
Comparing and Sequencing	Sequence events in chronological order using language [for example, before and after, next, first, today, yesterday, tomorrow, morning, afternoon and evening]	Compare and sequence intervals of time	Compare durations of events [for example, to calculate the time taken by particular events or tasks]			
	Recognise and use language relating to dates, including days of the week, weeks, months and years					
	Compare, describe and solve practical problems for time [for example, quicker, slower, earlier, later]					
Measure and Estimate	Measure and begin to record time (hours, minutes, seconds)		Estimate and read time with increasing accuracy to the nearest minute; record and compare time in terms of seconds, minutes and hours; use vocabulary such as o'clock, am/pm, morning, afternoon, noon and midnight		Use all four operations in problems involving time and money, including conversions (for example, days to weeks, expressing the answer as weeks and days). (Non-Statutory Guidance)	
Telling the Time	Tell the time to the hour and half past the hour and draw the hands on a clock face to show these times	Tell and write the time to five minutes, including quarter past/to the hour and draw the hands on a clock face to show these times	Tell and write the time from an analogue clock, including using 12-hour clocks, 24-hour clocks and using Roman Numerals from I to XII	Read, write and convert time between analogue and digital 12-hour and 24hour clocks	Complete, read and interpret information in tables, including timetables	
	Use the language of time, including telling the time throughout the day, first using o'clock and then half past. (Non-statutory Guidance)	Become fluent in telling the time on analogue clocks and recording it. (Non-Statutory Guidance)	Use both analogue and digital 12-hour clocks and record their times. In this way they become fluent in and prepared for using digital 24 -hour clocks in year 4. (Non-Statutory Guidance)			
Conversion		Know the number of minutes in an hour and the number of hours in a day	Know the number of seconds in a minute and the number of days in each month, year and leap year	Solve problems involving converting from hours to minutes, minutes to seconds, years to months, weeks to days	Solve problems involving converting between units of time	

Every child deserves to be the best they can be

East Midlands Academy Trust		East Midlands Academy Trust Maths Skill Progress Map - Geometry					
	Year 1		Year 2	Year 3	Year 4	Year 5	Year 6
Identifying Shapes and their Properties	Recognise and name 2-D shapes [for example, rectangles (including squares), circles and triangles]	Identify and describe the properties of 2-D shapes, including the number of sides, and line symmetry in a vertical line		Identify horizontal and vertical lines and pairs of perpendicular and parallel lines	Draw symmetric patterns using a variety of media to become familiar with different orientations of lines of symmetry; and recognise line symmetry in a variety of diagrams, including where the line of symmetry does not dissect the original shape. (Non-Statutory Guidance)	Distinguish between regular and irregular polygons based on reasoning about equal sides and angles	Relationships might be expressed algebraically for example, $d=2 \times r$. (NonStatutory Guidance)
	Recognise and name 3-D shapes [for example, cuboids (including cubes), pyramids and spheres]	Identify and describe the properties of 3-D shapes, including the number of edges, vertices and faces				Identify 3-D shapes, including cubes and other cuboids, from 2-D representations	Describe simple 3-D shapes
		Identify 2-D shapes on the surface of 3-D shapes, ffor example, a circle on a cylinder and a triangle on a pyramid]				Use the properties of rectangles to deduce related facts and find missing lengths and angles (From Measures)	
	Handle common 2-D and 3-D shapes, naming these and related everyday objects fluently. (Non-Statutory Guidance)	Handle and name a wide variety of common 2D and 3-D shapes including: quadrilaterals and polygons, and cuboids, prisms and cones, and identify the properties of each shape (for example, number of sides, number of faces). Identify, compare and sort shapes on the basis of their properties and use vocabulary precisely, such as sides, edges, vertices and faces. Read and write names for shapes that are appropriate for their word reading and spelling. (Non-Statutory Guidance)		Knowledge of the properties of shapes is extended at this stage to symmetrical and non-symmetrical polygons and polyhedra. Pupils extend their use of the properties of shapes. They should be able to describe the properties of 2-D and 3-D shapes using accurate language, including lengths of lines and acute and obtuse for angles greater or lesser than a right angle. (Non-Statutory Guidance)	Continue to classify shapes using geometrical properties, extending to classifying different triangles (for example, isosceles, equilateral, scalene) and quadrilaterals (for example, parallelogram, rhombus, trapezium). (Non-Statutory Guidance)	Use the term diagonal and make conjectures about the angles formed between sides, and between diagonals and parallel sides, and other properties of quadrilaterals, for example using dynamic geometry ICT tools. (Non-Statutory Guidance)	Describe the properties of shapes and explain how unknown angles and lengths can be derived from known measurements.(Non-Statutory Guidance)
Drawing and Construction		Draw lines and shapes using a straight edge. (non-Statutory Guidance)		Draw 2-D shapes	Complete a simple symmetric figure with respect to a specific line of symmetry (From Position)	Become accurate in drawing lines with a ruler to the nearest millimetre, and measuring with a protractor. They use conventional markings for parallel lines and right angles. (NonStatutory Guidance)	Draw 2-D shapes using given dimensions and angles
				Connect decimals and rounding to drawing and measuring straight lines in centimetres, in a variety of contexts. (Non-Statutory Guidance)			Draw shapes and nets accurately, using measuring tools and conventional markings and labels for lines and angles. (Non-Statutory Guidance)
				Make 3-D shapes using modelling materials; recognise 3-D shapes in different orientations and describe them			Recognise and build simple 3-D shapes, including making nets
Comparing and Classifying	Recognise these shapes in different orientations and sizes, and know that rectangles, triangles, cuboids and pyramids are not always similar to each other. (Non-Statutory Guidance)	Compare and sort common	2-D shapes and everyday objects		Compare and classify geometric shapes, including quadrilaterals and triangles, based on their properties and sizes	Distinguish between regular and irregular polygons based on reasoning about equal sides and angles (Copied from Identifying Shapes and their Properties)	Compare and classify geometric shapes based on their properties and sizes and find unknown angles in any triangles, quadrilaterals, and regular polygons
Angles				Recognise angles as a property of shape or a description of a turn	Identify acute and obtuse angles and compare and order angles up to 2 right angles by size	Know angles are measured in degrees: estimate and compare acute, obtuse and reflex angles	Recognise angles where they meet at a point, are on a straight line, or are vertically opposite, and find missing angles
				Identify right angles, recognise that 2 right angles make a half-turn, 3 make threequarters of a turn and 4 a complete turn; identify whether angles are greater than or less than a right angle	Compare and order angles in preparation for using a protractor and compare lengths and angles to decide if a polygon is regular or irregular. (Non-Statutory Guidance)	Draw given angles, and measure them in degrees (${ }^{\circ}$)	Relationships might be expressed algebraically for example; $a=180-$ ($b+$ c). (Non-Statutory Guidance)
				Identify: - angles at a point and 1 whole turn (total 360°), - angles at a point on a straight line and half a turn (total 180°), - other multiples of 90°			
				Use angle sum facts and other properties to make deductions about missing angles and relate these to missing number problems. (Non-Statutory Guidance)			

		East Midlands Academy Trust Maths Skill Progress Map - Statistics				
	Year 1	Year 2	Year 3	Year 4	Year 5	Year 6
Interpreting, Construction and Presenting Data		Interpret and construct simple pictograms, tally charts, block diagrams and tables	Interpret and present data using bar charts, pictograms and tables	Interpret and present discrete and continuous data using appropriate graphical methods, including bar charts and time graphs	Connect work on coordinates and scales to their interpretation of time graphs. (NonStatutory Guidance)	Interpret and construct pie charts and line graphs and use these to solve problems Encounter and draw graphs relating two variables, arising from their own enquiry and in other subjects. (Non-Statutory Guidance) connect conversion from kilometres to miles in measurement to
		Record, interpret, collate, organise and compare information (for example, using many-to-one correspondence in pictograms with simple ratios 2,5,10). (Non-Statutory Guidance)	Understand and use simple scales (for example, 2, 5,10 units per cm) in pictograms and bar charts with increasing accuracy. (Non-Statutory Guidance)	Understand and use a greater range of scales in their representations. (Non-Statutory Guidance)	Begin to decide which representations of data are most appropriate and why. (Non-Statutory Guidance)	Connect work on angles, fractions and percentages to the interpretation of pie charts. (Non-Statutory Guidance)
Averages						Calculate and interpret the mean as an average
						Know when it is appropriate to find the mean of a data set. (Non-Statutory Guidance)
Solving Problems		Ask and answer simple questions by counting the number of objects in each category and sorting the categories by quantity	Solve one-step and two-step questions [for example 'How many more?' and 'How many fewer?'] using information presented in scaled bar charts and pictograms and tables	Solve comparison, sum and difference problems using information presented in bar charts, pictograms, tables and other graphs	Solve comparison, sum and difference problems using information presented in a line graph	
		Ask-and-answer questions about totalling and comparing categorical data	Continue to interpret data presented in many contexts. (Non-Statutory Guidance)	Begin to relate the graphical representation of data to recording change over time. (NonStatutory Guidance)	Solve comparison, sum and difference problems using information presented in bar charts, pictograms, tables and other graphs (Yr4	
Every child deserves to be the best they can be						

Every child deserves to be the best they can be

